

BEGINNER’S
STEP-BY-STEP
THEC64
COMPUTING

CODING
COURSE

Rich Stals

Copyright © 2020 Richard Stals.

All rights reserved. No part of this publication may be reproduced, distributed,
or transmitted in any form or by any means, including photocopying, recording,
or other electronic or mechanical methods, without the prior written
permission of the publisher, except in the case of brief quotations embodied in
critical reviews and certain other non-commercial uses permitted by copyright
law.

ISBN: 979-869666737-9

First printing edition 2020.

Rich Stals
www.stals.com

INTRODUCTION ... 5	
THE KEYBOARD .. 6	
LESSON 1 GETTING STARTED 11	
LESSON 2 YOUR FIRST PROGRAM 16	
LESSON 3 BUILDING BLOCKS 23	
LESSON 4 INPUT AND OUTPUT 42	
LESSON 5 LOOPS .. 47	
LESSON 6 DECISIONS 52	
LESSON 7 POKE AND PEEK 55	
LESSON 8 CHARACTER GRAPHICS 58	
LESSON 9 ANIMATION 70	
LESSON 10 DATA BANKS 75	
LESSON 11 SPRITE GRAPHICS 85	
LESSON 12 SOUNDS AND SPECIAL EFFECTS 104	
LESSON 13 SOME MORE RANDOMNESS 126	
LESSON 14 SUBROUTINES 135	
LESSON 15 PUT IT ALL TOGETHER 138	
APPENDIX A ASCII CHARACTER SET 167	
APPENDIX B SCREEN MEMORY CODES 170	
APPENDIX C ERROR MESSAGES 173	

C
O
N
T
E
N
T
S

5

INTRODUCTION
You have gone and bought yourself your THEC64 Maxi and played a bunch of
games while reliving the glory days of 8-bit home computing in the 80s. If you
are now asking yourself, “What’s next?” This book is for you.

Today I work in a global Educational Technology company. My background in
Computer Science means that I have been able to create computer programs
for a wide range of industries. From web-based information tracking systems
for mining companies to immersive first-person educational simulations for
Paramedics and Nurses, being able to code has opened a wide world of creative
expression for me.

I started programming when I was 10 years old. My parents bought me a
brand-new Commodore 64 for my birthday. I spent hours playing Boulder
Dash, Pitstop II and Ace of Aces. However, it was when I found a copy of a
step-by-step programming guide in my local library that my love of the
Commodore 64 was cemented. I was no longer limited to interacting with my
computer in the way that someone else had decided. I was now able to make
my computer do what I wanted. It now displayed the text and images I
constructed. It played the sounds and music I created. Suddenly, a whole new
world had opened up before me, and I was its creator.

This step-by-step coding course for THEC64 is based on the way that I first
learned to code my Commodore 64. You will learn to code using BASIC
(Beginner’s All-purpose Symbolic Instruction Code), growing your skills and
knowledge until you are able to create a fully-fledged program complete with
user input, animated graphics, music and more.

This coding course is written especially for THEC64 Maxi. However, it will work
for the original Commodore 64 too, if you have one.

This course is full of straightforward information given in easy to digest bite-
size pieces. Each part builds on the ones before it. There is computer jargon,
but it is jargon you will understand as you make your way through it. Is
learning to code THEC64 essential to enjoying it? No. Will it help you
understand and engage with it more? I hope so. Could this lead to a new and
amazing career direction? Definitely, if that’s what you want.

6

THE KEYBOARD

7

THEC64 keyboard is similar to any modern computer keyboard, but it has some
keys and functions specific to running in BASIC mode. Let’s take a closer look
at these keys and functions.

RETURN

 The RETURN key acts a little like the return or enter key on your
regular computer keyboard by moving the cursor to a new line.

When entering a program, pressing the RETURN key tells the computer to look
at what you have just typed in, check it and then enter it into the computer’s
memory.

SHIFT AND SHIFT LOCK

 The SHIFT key works similar to that of a regular computer keyboard.
It lets you type onto the screen the top characters on the double-character
keys.

When you want to type in the graphics characters on the front of the keys,
press and hold the SHIFT key and then tap the key to use the graphic character
on the right side of the key.

 For example SHIFT + W will produce .

Press the SHIFT LOCK key to ‘lock’ the shift function on the
keyboard. An arrow appears in the top-right corner of the screen
to let you know that SHIFT LOCK is ON.

With this on, any key you press will act as if you are also holding down the
SHIFT key. Press it again to turn SHIFT LOCK to OFF.

8

CRSR (CURSOR KEYS)

 The two cursor control keys let you move the cursor around the
screen. Use the ⇑ CRSR ⇓ key to move the cursor down, use it with the SHIFT
key to move the cursor up. Use the ⇐CRSR⇒ key to move the cursor right, use
it with the SHIFT key to move the cursor left.

You don’t need to repeatedly tap the cursor key. Instead, you can hold it down
to move the cursor to where you want it to go.

INST/DEL

 The INST/DEL key is used for editing your program and other text on the
screen. When you press the INST/DEL key by itself, it backspaces and deletes
one character to the left of the cursor. When you press it with the SHIFT key it
will insert a blank space to the right of the cursor.

The Insert functionality of the key is important when editing your programs.
This is because whatever you type will overwrite what is already on the screen.

For example, I have a command that will PRINT out the word WORLD on
screen. I want to actually PRINT out the words HELLO WORLD. So, I use the
CRSR keys to move my cursor over the letter W.

I then press SHIFT+INST/DEL six times to insert enough spaces for my missing
word.

Now I can type in the missing text.

9

CLR/HOME

 Pressed on its own, the CLR/HOME key will move the cursor back to its
home position, the top-right corner of the screen. If you hold the SHIFT key
and press the CLR/HOME key, it will clear the screen and move the cursor to its
home position.

RESTORE

 Hold down the RUN/STOP key and press the RESTORE key to restore
your computer to its normal state. This will clear the screen, return it to its
original colour and reset the video and sound chips.

CTRL (CONTROL)

 The Control key lets you perform special control functions on the
computer. Use it with the number keys 1 to 8 to change the text colour to the
colour written on that key. Press the CTRL key and the numbers 9 and 0 to
produce reversed characters.

10

THEC64

 Use this key with the SHIFT key to switch between the uppercase and
lowercase display modes.

Use it with the numbers 1 to 8 to access the additional 8 colours.

When you want to type in the graphics characters on the front of the keys,
press and hold the THEC64 key and then tap the key to use the graphic
character on the left side of the key.

 For example THEC64 + W will produce .

11

LESSON 1
GETTING STARTED
Connect your THEC64 and turn it on. By default, it will boot up into the
Carousel mode, giving you a Graphical User Interface to a collection of pre-
installed games. To begin your programming journey, you will need to access
the Classic mode.

CLASSIC MODE

To access the Classic mode, use your joystick to open the Device Settings menu
– click on the spanner icon.

12

Then select Switch to Classic Mode.

You will now be in THEC64’s Classic Commodore 64 BASIC mode.

SET THE DEFAULT BOOT MODE

You can also set your THEC64 to automatically boot into Classic mode by
default. To do this, access the Device Settings menu. Click the menu button
on your joystick.

The menu appears at the bottom of the screen.

13

Select the Options item.

Select Device Settings > Boot Mode. Then select the Classic option.

Click the menu button on the joystick to return to the Commodore 64 BASIC
mode. Every time you start your THEC64, you will automatically boot into this
mode.

14

BLANK VIRTUAL DISK

When you launch your THEC64 it automatically searches for an attached USB
stick. If it finds one, it then searches for a compatible virtual disk file named
THEC64-drive8.d64exists in the root directory of your USB stick. This file acts
as if it is a floppy disk drive attached to your computer. You will need this up
and running in order to save and load the programs you create during this
course.

STEP 1: PREPARE YOUR USB

You will need a USB drive that you are happy to completely erase of any
existing files. Choose a USB stick that is 32GB or less in size. You will need to
use an existing computer to format the USB drive using the FAT32 (or FAT)
format with Master Boot Record (MBR). The steps for doing this vary
depending on the type and version of your computer’s operating system. I
suggest you follow the steps outlined in Appendix B of THEC64 User Manual,
which can be downloaded for free at:

https://retrogames.biz/thec64/support/manuals-thec64

STEP 2: INITIALISE THE USB

Make sure your THEC64 is turned off. Insert your formatted USB stick and turn
it on.

Check your USB now has a blank virtual disk. Click the Menu button on your
joystick and select the Media access option.

15

You will see that your blank virtual disk is listed. Notice that the virtual disk is
also listed as being ‘inserted’ into the computers virtual disk drive.

Exit the menu. You are ready to begin your Commodore 64 coding journey on
your THEC64.

16

LESSON 2
YOUR FIRST PROGRAM
We are going to write your very first Commodore 64 BASIC program, save it to
your virtual disk and then list the contents of your virtual disk to see if
everything worked as expected.

ENTER YOUR FIRST PROGRAM

Make sure you are in Classic mode.

Type in the following BASIC computer code exactly as it is written below. Be
sure to press the RETURN key after every line.

10 PRINT "HELLO WORLD"

20 GOTO 10

Every time you type a line of BASIC code and hit the RETURN key; the computer
places it into the short-term memory of the computer.

Let’s examine what each part of this program does.

Firstly, you will notice that each line begins with a line number. This tells the
computer in what order to run each line of code. Traditionally, we increment
the line numbers by 10. This means that if we find we need to insert a few
extra lines of code, we have another 9 number to use to add these extra
commands.

The program is very simple. The first line tells the computer to PRINT the
words HELLO WORLD to the screen. The second line tells the computer to go
to line 10. The computer will loop back to the first command to PRINT the text
to screen.

Now you are ready to run your first program. To run a program that is loaded
in the computer’s memory we use the BASIC command RUN. Type the word
RUN and hit RETURN.

17

You will see a column of text run down the screen as your program repeatedly
PRINTs the words HELLO WORLD on the screen. We wrote our program to
cause what is known as an infinite loop. The computer will simply keep on
looping through our code with no way to know how to stop.

Press the RUN/STOP key to force your program to stop.

Notice how the computer tells you which line you in your code that the
computer cancelled the programming running.

18

LIST YOUR PROGRAM

The program is sitting in the computer’s short-term memory. You can list the
code of any program that is in memory by using the LIST command. Type in
LIST and press the RETURN key.

Your program will display on the screen.

EDIT YOUR PROGRAM

Let’s try a couple of ways that we can edit a program listing. Firstly, let’s add a
new line of code between lines 10 and 20. Type in a new line 15 and tell the
computer to PRINT some text of your choice. E.g.

15 PRINT "HELLO PERTH!!!"

Now, type the LIST command and press the RETURN key to list the edited
computer program. [Note, from now on I will not remind you to press the
RETURN key when you want to run a command.]

Notice that even though we typed line 15 in last, when we list the full program
the computer lists it in the order it will execute the code (‘execute’ is just the
way computer programmers refer to it when a computer runs a program).

19

Next, we will edit an existing line of code to change it. I want to change line 10
to say hello to me. Theoretically we could just type in a new line of code and if
we give it the line number 10, it will replace what was already in line number 10.

Instead, we can use the LIST command to PRINT out our program on the screen
and then use our cursor keys to move our cursor to the line and change it there.

Let’s do it. Use your cursor keys to change line number 10 to say HELLO [YOUR
NAME]. E.g.

10 PRINT "HELLO RICHARD"

When you press the RETURN key after editing the line of code, it will replace
the code currently in memory for line 10 with the edited version you just typed
in.

Use the cursor keys to move back down the page past the READY prompt and
use the RUN command to execute your newly edited program.

20

SAVE YOUR PROGRAM TO DISK

Your program currently sits in the computer’s short-term memory, known as
Random Access Memory or RAM. If you turn off your computer, you will lose
everything in the RAM. To keep a copy of your program long term, you will
need to save it to the Virtual Disk.

To save your computer program to disk we use the SAVE command in the
following format: SAVE “[FILE-NAME]”,8. This will save your program as the
filename you type between the quotation marks. The ,8 part of the command
tells the computer to save it to the disk drive. Type in a SAVE command to
store your program.

SAVE "HELLO-WORLD",8

21

LOAD YOUR PROGRAM FROM DISK

Turn your computer off (hold down the power button for 2 seconds) and then
turn it back on again to wipe out program from RAM.

You can check that your program is no longer in memory by typing the LIST
command once you restart your computer.

If you know the file name of the program you want to load, you can load it
straight away. However, let’s look at how you can view the list of files on your
virtual disk. We will use the LOAD command to load something into the
computer’s RAM. We use the $ symbol to specify we want to load the contents
of the disk directory into memory.

Type in the following commands:

LOAD "$",8

LIST

You will see all the files that have been saved on this disk.

22

To load your program, type in the load command using the file name you used
to save it with.

LOAD "HELLO-WORLD",8

You can now LIST and RUN your code again.

The LOAD command replaces whatever is currently within the computer’s
RAM. This means that if you now re-run the directory load command, it will
replace your code with the directory listing. Try it.

LOAD "$",8

RUN

The computer will display a Syntax Error. This means that whatever is
currently in memory cannot be run as a BASIC language computer program.
Go ahead and re-load your program and check that it does indeed now run
correctly.

23

LESSON 3
BUILDING BLOCKS
In this chapter we will look at the basic building blocks of coding the
Commodore 64 in BASIC. Don’t be tempted to skip this section. It lays a solid
foundation for the rest of the course.

DISPLAY NUMBERS AND TEXT

Remember how we used the SHIFT + CLR/HOME key combination to clear the
screen and send the cursor to the home position? You can do the exact same
thing by PRINTing the matching character code to the screen. (Don’t worry
about character codes yet, just try out the following exercise).

The character code for to clear the screen is 157. We can use the PRINT
CHR$(147) command to PRINT this character code to the screen. However,
computers need you to be exactly correct when you type in commands and if
you get it even just slightly wrong, it will display some kind of error message.

For example, if you type in PRINT CHRS(147) or PRNT CHR$(147) the computer
will display an error message. Try it and see what happens.

24

DISPLAY A NUMBER

Clear the screen and type the following command to display a number.

PRINT 7

Try this with other numbers.

DISPLAY SOME TEXT

When you want to display text, called a String in programming languages, you
use the PRINT command and type the text you want to appear inside quotation
marks. For example:

PRINT "COMMODORE 64"

Try it with other strings. You can use any characters on the keyboard to PRINT.

25

USING VARIABLES

So far, we have displayed numbers and strings using static values. Let’s have a
look at what is called Variables.

Clear the screen and type in the following command.

PRINT AGE

The result might surprise you. Instead of displaying the word AGE, the
computer displayed the number 0. Now type in this command:

PRINT "AGE"

This time the computer responded as you might have originally expected.

When you use a word without the surrounding quotation marks, the computer
thinks you are referring to a variable called AGE. A variable is a label for a
particular slot in its memory. When you typed in the command without
quotation marks, the computer searched its memory for a slot labelled AGE
and when it couldn’t find it, it created it and assigned an initial value of 0.

We use the command LET to assign a value to a variable. Let’s assign a value to
our variable AGE.

LET AGE=43

Now type the command to display the variable AGE to screen. When you use a
word without quotation marks it always refers to a variable that points to a
numeric value.

What if we want to have a variable that points to a string value? In that case
we use a word that ends with the $ symbol. For example, we can use the
variable CITY$ to hold the string value of a city.

 Assign a string value to the variable CITY$.

LET CITY$="PERTH"

26

Now type the command to display the variable CITY to screen.

You can change the value of a variable as many times as you like. Let’s change
the value of CITY$.

LET CITY$="LOS ANGELES"

Experiment with assigning and displaying some numeric and string variables.

COLOURS

The Commodore 64 can display 16 colours, all of which can be accessed from
the keyboard. In this section you will learn some ways of displaying colour on
the screen.

By default, the Commodore 64’s display is blue with a light blue border. Let’s
go ahead and change the display to black instead, type in:

POKE 53280,0:POKE 53281,0

(You will find out how these commands work in a later lesson.)

27

CHANGE COLOURS USING THE KEYBOARD

If you look at the Keyboard you will see 8 colours PRINTed on the front of the
number keys 1 to 8. You can change the current text colour by holding the
CTRL key and tapping one of these number keys. Another 8 colours can be
accessed by holding the THEC64 key and tapping one of the number keys.

Go ahead and experiment with changing text colours using the keyboard.

(You can access the heart character using SHIFT + S.)

CHANGE COLOURS USING CONTROL SYMBOLS

Instead of using the keyboard, you can use control symbols in a string variable
to change the colours. This is useful because the colour doesn’t change until
the actual string is instructed to PRINT, which can be useful when writing your
own programs.

Typing in colour control symbols is easy, you do it exactly the same way that
you used to change the colours using the keyboard. However, because we are
declaring a string variable using the LET command, a graphic symbol is inserted
into the string.

Let’s declare a string called C$ and make it PRINT out a purple string.

LET C$="[CTRL+5] THEC64 ROCKS!"

28

Although using colour control symbols is easy to type in using the keyboard, it
is much harder to do so if we are trying to copy in the code from a computer
program listing. Instead, we can use a third way.

CHANGE COLOURS USING CHARACTER CODES

The Commodore 64 uses a set of codes called American Standard Code for
Information Interchange or ASCII to represent all of the characters that can be
PRINTed to the screen. For example, the capital letter A is represented by the
ASCII code 65, the capital letter B by 66 and so on. There are ASCII codes also
for operations such as moving the cursor, creating a new line and changing the
text colour.

(The full set of ASCII codes used in the Commodore 64 are included in the
Appendices at the back of this book.)

In Commodore BASIC you use the CHR$ command to produce the character or
operation of an ASCII code.

29

ASCII Colour Codes

Colour ASCII Code Colour ASCII Code

Black 144 Orange 129

White 5 Brown 149

Red 28 Light Red 150

Cyan 159 Dark Gray 151

Purple 156 Medium Gray 152

Green 30 Light Green 153

Blue 31 Light Blue 154

Yellow 158 Light Gray 155

Reverse On 18 Reverse Off 146

30

You can also use the CHR$ command and ASCII codes when defining string
variables. To do this you can use what is called ‘String Concatenation’, that is,
joining more than one string or ASCII code command together into a single
string variable.

For example, we want to declare a string variable A$, set the colour to White,
display some text, change the colour to Green and then display some more
text.

LET A$ = CHR$(5)+"ONE " +CHR$(30)+"TWO"

Then PRINT the A$ variable to display the text and colour codes.

31

CALCULATIONS

You can use BASIC code to perform a wide variety of mathematical
calculations.

BASIC CALCULATIONS

The four basic mathematics calculations have matching symbols in much the
same way that symbols are used on a calculator.
+ Add

- Subtract

* Multiply

/ Divide

Use the PRINT command to perform some basic maths calculations and display
the result on the screen.

32

ADVANCED CALCULATIONS

You can use in-built mathematical functions to calculate the exponents and
square roots of numbers. Exponential numbers are a number multiplied by
itself a specified number of times. For example, 23 is the same as doing 2x2x2
which equals 8. To do an exponential calculation on the Commodore 64, you
use the up-arrow character . So, 23 is entered as 2 3.

There isn’t a character used to represent the square root calculation, instead
we use the SQR command, for example SQR(2) to calculate the square root of
2.

SEQUENCING CALCULATIONS

You can chain together a number of calculation steps into a single calculation.
Say you want to add to numbers together and divide the result by 2. You might
think the order you type the numbers in should not make a difference because
6+2 is the same as 2+6. However, you will see something you might not expect
when you try this on your computer.

33

Your computer will not necessarily process your calculation in the order you
type it in. Computers use what is called the BIMDAS order of mathematical
operations. BIMDAS represents the following order that is used:

1. Brackets

2. Indices

3. Multiplication and Division

4. Addition and Subtraction

In our example above, we wanted the computer to add the first two numbers
together first before dividing that result by the third number. However, by
following the rules of BIMDAS the computer performs the division first and
then performs the addition second. You can see that neither of the first two
calculations produced the result we were looking for. To change the order, we
needed to use brackets to define which part of the calculation to perform first.

LIMITS FOR NUMBERS

The Commodore 64 has two kinds of limits when it comes to its numbers, size
and accuracy.

In terms of size, numbers that have a decimal point you can have any number
between 1x1038 (1 followed by 38 zeros) to -1x1038 (-1 followed by 38 zeros).
Whole numbers (also called integers) can be within the range of 32,767 to -
32,768.

34

In terms of accuracy, although you can store a number with a decimal point in
a very large range (size), the computer only stores the first nine digits, the rest
it sets to zero. For whole numbers, the computer stores these with complete
accuracy.

For very large numbers, you will notice that the computer will display these in a
strange format that uses the letter E. Try the following command:

PRINT 1000000000000

It will PRINT 1E+12 on the screen. The E stands for ‘exponent’ and is a
shorthand way of displaying 1x1012 or 1 followed by 12 zeros.

Try displaying and executing some large number calculations of your own.
What do you think the ?OVERFLOW ERROR means?

35

DISPLAYING LISTINGS

So that we have a program to list, type the following code into your
Commodore 64. Then RUN the program.

10 REM SCREEN DISPLAY

20 PRINT TAB(8); "************"

30 PRINT TAB(8); "*"; TAB(19); "*"

40 PRINT TAB(8); "*"; TAB(12); "MATH";
TAB(19); "*"

50 PRINT TAB(8); "*"; TAB(19); "*"

60 PRINT TAB(8); "*"; TAB(11); "8/2="; 8/2;
TAB(19); "*"

70 PRINT TAB(8); "*"; TAB(19); "*"

80 PRINT TAB(8); "************"

Let’s look at what the above code does.

In line 10, the code REM stands for REMark, the computer doesn’t do anything
with this line. These are designed to let you add comments into your programs
to help you label your code to help you identify and understand sections of
your program.

36

Lines 20 to 80 PRINT * symbols in a frame around some text and a calculation.
These lines use the TAB command to position the symbols and text around the
screen at the correct positions. PRINT TAB(8) means that the computer will
start the display at column 8 on the screen instead of the left-hand edge. The
semi-colon symbol is used to chain together a group of items to display when
you want to show them all on the same line.

Go ahead and save your program to disk.

SAVE "MATH",8

Let’s explore the LIST command. We already know that typing the command
by itself will list out the entire program. However, there are some neat little
tricks that will become very useful when you begin entering very large program
listings.

You can list a single line by tying the LIST command followed by the line
number, for example, LIST 10.

You can look at a range of lines, say lines 40 to 50 by using LIST 40-50. Look at
the first 30 lines with LIST -30 or all the lines from 70 until the end of the
program with LIST 70-.

37

If you have a very long program and you want to scroll through the listing while
looking for a particular section of code, just use the LIST command on its own.
You will notice that the code scrolls very fast. However, you can slow down the
list scrolling by holding down the CTRL key. When you see the section you
want, hit the STOP key to abort, or BREAK, the listing. You can then LIST the
specific line or range of lines you were looking for.

CORRECTING MISTAKES

Mistakes are an unavoidable part of computer programming. Sometimes you
need to correct a simple mistyped line, maybe you want to change something
already in the program or you want to add in a line you forgot to when you first
keyed in your code.

Say we want to change our Math screen display program from earlier. Instead
of calculating 8/2 we want to calculate 8*2. We could simply retype line 60 in
and replace it with our new line, but because we only want to change to
characters in the line, we can use our cursor control keys to edit the line
instead.

You could LIST the entire program code listing, but because we know which line
we want to edit, we will just list line 60. Then we use the cursor control keys,
along with the SHIFT key to move our cursor over the first / symbol. Then we
can type over that with the * symbol instead. (If you ever need to edit a line
that needs more room for your changes you will need to use the INSRT key to
add in the required number of spaces before typing in your change.)

Once you have made the changes, press the RETURN key to save your changes.

38

Often you will want to add in a line into your code. For example, we want to
add in a line to clear the screen before anything is PRINTed to the screen. You
don’t need to edit any line numbers to do this. This is why we use multiples of
10 for our line numbers, it makes adding in new lines much easier. Try:

5 PRINT CHR$(147)

39

ERROR MESSAGES

Mistakes or errors in code are called bugs and the processes of troubleshooting
and fixing these errors is called debugging. The Commodore 64 has a range of
helpful error messages to help you track down and fix these bugs in your code.

Try the following typing in and RUNning the following small programs that
each contain an error. You should be able to see which line the error happens
on.

10 FOR X=60 TO 100

20 PRINT 2 X,3 X

30 NEXT X

40

10 FOR X=0 TO 20

20 INPUT B

30 PRINT B/X

40 NEXT X

41

10 INPUT "ENTER A NUMBER ";A

20 FOR F=1 TO 12

30 PRINT TAB(9);F;"*";A;"=";F*A

40 NEXT G

167

APPENDIX A
ASCII CHARACTER SET

ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character

0 64

128 192

1 65 129 Orange 193
2 66 130 194
3 STOP 67 131 RUN 195
4 68 132 196
5 White 69 133 F1 197
6 70 134 F3 198
7 71 135 F5 199
8

72 136 F7 200

9

73 137 F2 201
10 74 138 F4 202
11 75 139 F6 203
12 76 140 F8 204
13 RETURN 77 141 SHIFT+RETURN 205
14 Lower

Case
78 142 Upper Case 206

15 79 143 207
16 80 144 Black 208
17 Cursor

Down
81 145 Cursor Up 209

18 Reverse
On

82 146 Reverse Off 210

168

ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character

19 HOME 83 147 CLR 211
20 DEL 84 148 INS 212
21 85 149 Brown 213
22 86 150 Light Red 214
23 87 151 Dark Grey 215
24 88 152 Grey 216
25 89 153 Light Green 217
26 90 154 Light Blue 218
27 91

155 Light Grey 219

28 Red 92

156 Purple 220

29 Cursor
Right

93

157 Cursor Left 221

30 Green 94

158 Yellow 222

31 Blue 95

159 Cyan 223

32 SPACE 96

160 SHIFT+SPACE 224

33

97 161

225

34

98 162

226

35

99 163

227

36

100 164

228

37

101 165

229

38

102 166

230

39

103 167

231

40

104 168

232

41

105 169

233

169

ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character
ASCII
Code

Character

42

106 170

234

43

107 171

235

44

108 172

236

45

109 173

237

46

110 174

238

47

111 175

239

48

112 176

240

49

113 177

241

40

114 178

242

51

115 179

243

52

116 180

244

53

117 181

245

54

118 182

246

55

119 183

247

56

120 184

248

57

121 185

249

58

122 186

250

59

123

187

251

60

124

188

252

61

125

189

253

62

126

190

254

63

127

191

255

170

APPENDIX B
SCREEN MEMORY CODES

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

0 128

64 192

1 129

65 193

2 130

66 194

3 131

67 195

4 132

68 196

5 133

69 197

6 134

70 198

7 135

71 199

8 136

72 200

9 137

73 201

10 138

74 202

11 139

75 203

12 140

76 204

13 141

77 205

14 142

78 206

15 143

79 207

16 144

80 208

17 145

81 209

18 146

82 210

19 147

83 211

171

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

20 148

84 212

21 149

85 213

22 150

86 214

23 151

87 215

24 152

88 216

25 153

89 217

26 154

90 218

27 155

91 219

28 156

92 220

29 157

94 221

30 158

94 222

31 159

95 223

32 160 SPACE 96 224 SPACE

33 161

97 225

34 162

98 226

35 163

99 227

36 164

100 228

37 165

101 229

38 166

102 230

39 167

103 231

40 168

104 232

41 169

105 233

42 170

106 234

172

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

Screen Code
(Normal /
Reverse)

Character
(Upper /
Lower)

43 171

107 235

44 172

108 236

45 173

109 237

46 174

110 238

47 175

111 239

48 176

112 240

49 177

113 241

50 178

114 242

51 179

115 243

52 180

116 244

53 181

117 245

54 182

118 246

55 183

119 247

56 184

120 248

57 185

121 249

58 186

122 250

59 187

123 251

60 188

124 252

61 189

125 253

62 190

126 254

63 191

127 255

173

APPENDIX C
ERROR MESSAGES
BAD DATA
String data was received from an open file, but the program was expecting
numeric data.

BAD SUBSCRIPT
The program was trying to reference an element of an array whose number is
outside of the range specified in the DIM statement.

BREAK
Program execution was stopped because you hit the <STOP> key.

CAN'T CONTINUE
The CONT command will not work, either because the program was never
RUN, there has been an error, or a line has been edited.

DEVICE NOT PRESENT
The required I/O device was not available for an OPEN, CLOSE, CMD, PRINT#,
INPUT#, or GET#.

DIVISION BY ZERO
Division by zero is a mathematical oddity and not allowed.

EXTRA IGNORED
Too many items of data were typed in response to an INPUT statement. Only
the first few items were accepted.

FILE NOT FOUND
If you were looking for a file on tape, and END-OF-TAPE marker was found. If
you were looking on disk, no file with that name exists.

FILE NOT OPEN
The file specified in a CLOSE, CMD, PRINT#, INPUT#, or GET#, must first be
OPENed.

FILE OPEN
An attempt was made to open a file using the number of an already open file.

FORMULA TOO COMPLEX
The string expression being evaluated should be split into at least two parts for
the system to work with, or a formula has too many parentheses.

ILLEGAL DIRECT
The INPUT statement can only be used within a program, and not in direct
mode.

174

ILLEGAL QUANTITY
A number used as the argument of a function or statement is out of the
allowable range.

LOAD
There is a problem with the program on tape.

NEXT WITHOUT FOR
This is caused by either incorrectly nesting loops or having a variable name in a
NEXT statement that doesn't correspond with one in a FOR statement.

NOT INPUT FILE
An attempt was made to INPUT or GET data from a file which was specified to
be for output only.

NOT OUTPUT FILE
An attempt was made to PRINT data to a file which was specified as input only.

OUT OF DATA
A READ statement was executed but there is no data left unREAD in a DATA
statement.

OUT OF MEMORY
There is no more RAM available for program or variables. This may also occur
when too many FOR loops have been nested, or when there are too many
GOSUBs in effect.

OVERFLOW
The result of a computation is larger than the largest number allowed, which is
1.70141884E+38.

REDIM'D ARRAY
An array may only be DIMensioned once. If an array variable is used before that
array is DIM'D, an automatic DIM operation is performed on that array setting
the number of elements to ten, and any subsequent DIMs will cause this error.

REDO FROM START
Character data was typed in during an INPUT statement when numeric data
was expected. Just re-type the entry so that it is correct, and the program will
continue by itself.

RETURN WITHOUT GOSUBA
RETURN statement was encountered, and no GOSUB command has been
issued.

STRING TOO LONG
A string can contain up to 255 characters.

175

?SYNTAX ERROR
A statement is unrecognizable by the Commodore 64. A missing or extra
parenthesis, misspelled keywords, etc.

TYPE MISMATCH
This error occurs when a number is used in place of a string, or vice-versa.

UNDEF'D FUNCTION
A user defined function was referenced, but it has never been defined using the
DEF FN statement.

UNDEF'D STATEMENT
An attempt was made to GOTO or GOSUB or RUN a line number that doesn't
exist.

VERIFY
The program on tape or disk does not match the program currently in memory.

